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The material point method (MPM) for solid mechanics conserves mass and mo-
mentum by construction, but energy conservation is not explicitly enforced. Material
constitutive response and internal energy are carried on discrete points (material
points), while the governing equations are solved on an overlying grid. The consti-
tutive response (and internal energy) may be updated at the beginning or end of a
numerical time step without affecting mass or momentum conservation properties.
Both versions of the algorithm have been applied in the literature. Here energy con-
servation on the material points is investigated and found to depend strongly on the
version of the algorithm used. The energy error is found and partitioned into two
terms, one of which is of definite sign (and dissipative). The other term is indefinite,
and of opposite sign for the two algorithmic variations. It is shown analytically for
a single-material-point free-vibration example that one version of the algorithm is
strictly dissipative. For the other version the error terms cancel each other out and
energy is conserved. The same trends are borne out in numerical solutions of free
axial vibration of continuum bars as the wavelength of the vibrational mode begins
to approach the computational cell size. The dissipative algorithm may be described
as tending to damp out unresolved modes. For resolved modes, both algorithms give
identical results, with no perceptible energy error or dissipation. It is suggested that
the dissipative algorithm is a better choice in general, as the damping is consistent
with the accuracy of the solution. c© 2002 Elsevier Science (USA)

Key Words: stability and convergence of numerical methods; error analysis; basic
methods in solid mechanics; linear vibrations.

1. INTRODUCTION

The material point method (MPM) is one of the latest developments in several decades
of particle-in-cell (PIC) methods, originally used to model highly distorted fluid flow [11].

1 Presently: Group T-14, MS B214, Los Alamos National Laboratory, Los Alamos, NM, 87545. E-mail:
bard@lanl.gov.

383

0021-9991/02 $35.00
c© 2002 Elsevier Science (USA)

All rights reserved.



384 S. G. BARDENHAGEN

Subsequent developments advanced the understanding of the algorithm and brought modi-
fications to reduce numerical diffusion [7, 9]. Fundamental aspects of PIC methods include
the interpolation of information between grid and particles and precisely which solution
variables will be ascribed to the grid and which to the particles. Several variants have been
tried, with a general trend toward keeping more properties on particles. Most recently, the
method has been applied to solid mechanics, where the ability of the particles, or material
points, to advect naturally Lagrangian state variables has been exploited in MPM [14, 16].

MPM is well suited for solid mechanics, where it is natural to have a reference state and
properties associated with specific locations in the reference state. Bodies deform accord-
ing to continuum mechanics constitutive models which generate stress based on both the
history and the current mechanical state. These models are often complex and require the
storage of “internal variables” representing the history-dependent state. Lagrangian material
points allow easy implementation of these constitutive models. Versions of hyperelasticity,
hypoelasticity, plasticity, and viscoelasticity have been implemented. MPM has found ap-
plication in the solution of a wide variety of problems, including mantle convection [12],
silo discharge [17], membrane stretching [18], landfill settlement [19], elastic vibrations
[14], collisions [4, 14–16], and the response of granular material [1–3].

While the MPM algorithm conserves mass and momentum by construction, energy con-
servation is not explicitly enforced. The internal energy is naturally calculated on material
points, where the constitutive response is evaluated. However, the double interpolation in
going from material point to grid and back again complicates the determination of the al-
gorithm’s properties for material point variables, in particular the material point internal
energies. Errors in energy conservation on the material points due to discretization via MPM
algorithms are examined here.

2. THE MATERIAL POINT METHOD

The MPM algorithm is presented here for completeness of the presentation, for consis-
tency of notation, and to highlight two possible algorithmic variations. It has been described
in greater detail elsewhere [14, 16].

2.1. Algorithm Overview

MPM is a PIC technique in which Lagrangian bodies are discretized by (Lagrangian)
material points which carry all material properties and state. This includes constitutive pa-
rameters (including internal variables), stress, strain, velocity, and temperature. In short, ev-
erything required to specify the current state and advance the solution. The MPM algorithm
also requires an overlying grid. The governing equations are solved on the grid, providing a
computational savings as well as a regular, structured grid on which to apply solution tech-
niques. Advantages of the MPM algorithm include the absence of mesh-tangling problems
and error-free advection of material properties via the motion of the material points.

The material point algorithm is an interplay between the material points and the overlying
grid. A time step begins with all information carried by the material points. Mass and
momentum are interpolated to the grid such that the total mass and momentum on the
material points and the grid are equal. Forces, both internal due to material stress and
external due to applied loads, are applied to the grid, where the conservation of momentum
is solved and the grid deforms. Changes in momenta are interpolated back to the material
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points, resulting in global conservation of momentum, and providing updated material
point velocities. Material point positions are updated consistent with the motion of the grid.
The material point stress states must also be updated, and this may be done in either the
undeformed grid configuration (at the beginning of the time step) or in the deformed one
(at the end of the time step). It is at this stage that the internal energy is updated. Finally the
deformed grid is discarded and the next time step begins with the lying down of a new grid.

2.2. The MPM Algorithm

For the derivations in the following section, it is useful to write down the specific steps
in the MPM algorithm. The one-dimensional interpolation function associated with grid
vertex v is the bilinear “hat” function, denoted Sv(x),

Sv(x) = 1 − |x − xv|/ lx if −lx ≤ x − xv ≤ lx ,
(1)

= 0 else,

where the vertex coordinant is xv and lx is the grid spacing. Note that for any x , summing
over all vertices gives the identity

∑
v Sv(x) = 1. Higher dimensional interpolation functions

are created using products of hat functions. In three dimensions

Sv(x) = S(x1)S(x2)S(x3). (2)

Higher dimensional interpolation functions retain the normalization

∑
v

Sv(x) = 1, (3)

as in the one-dimensional case. The form of the interpolation function in Eqs. (1) and (2)
reflect the use of a rectangular mesh with the same vertex locations at the beginning of each
time step.

The MPM algorithm begins with the interpolation of material point data to the overlying
grid. Data corresponding to the beginning of a time step are denoted by superscript 0, and
that at the end of the time step by superscript 1. Material point quantities are denoted with
subscript p, and grid quantities with subscript v. For example, x0

p is the position of material
point p at the beginning of the time step. The shorthand Svp = Sv(x0

p) is used throughout
this manuscript. First material point mass and momentum are interpolated to the grid. The
grid mass, mv , is interpolated from surrounding material points,

mv =
∑

p

Svpm p, (4)

where m p denotes material point masses. Updating the material point positions consis-
tent with the grid deformation results in the values of the interpolation functions being
Lagrangian invariants of the motion during a time step [6, 7]. Because, in addition, the mass
of the material points is fixed, the grid masses are constant throughout the time step, and
superscripts may be omitted. Derivation of the discrete momentum conservation equations
naturally leads to a consistent mass matrix (Eq. (25)) on the grid [9, 14, 16]. The lumped-
mass (diagonal) matrix, Eq. (4), may be obtained from the consistent one by summing rows.



386 S. G. BARDENHAGEN

In practice lumped masses are usually used in the discrete solution to spare computational
expense and avoid matrix inversion difficulties. The analysis in the following section consid-
ers only lumped-mass algorithms. The grid momenta, pv are interpolated from surrounding
material points

p0
v =

∑
p

Svpp0
p, (5)

where pp denote material point momenta.
Material point strains may now be calculated and the stresses updated (or the stress

update may be done at the end of the time step). The grid velocities, vv , may be calculated
by dividing momentum by mass, i.e.,

v0
v = p0

v

/
mv. (6)

Because material point strains (and the stress update) may be calculated either at the be-
ginning or end of the time step, it is important to distinguish between them. The strain
increment calculated from velocities v0

v is denoted by ��0
p, where

��0
p = 1

2

∑
v

(∇Svpv0
v + v0

v∇Svp
)
�t, (7)

∇Svp is shorthand for ∇Sv(x0
p), and ∇ is the gradient operator. Note that the strain increment

is simply Dp�t , where Dp is the symmetric part of the velocity gradient for material point
p, i.e., the rate of deformation tensor. The Cauchy stress update is

�1
p = �0

p + ��p
(
��0

p

)
, (8)

where �0
p is the Cauchy stress tensor at the beginning of the time step. For large rotations

an objective rate of stress could be incorporated into Eq. (8), but it is omitted here for
simplicity.

Regardless of whether the stress has been updated, forces are calculated on the grid using
the material point stresses via

f int
v = −

∑
p

∇Svp · �pVp, (9)

where Vp are material point volumes and · denotes the vector inner product. Contributions
from body forces and boundary tractions are included in an “external force” term f ext

v . At
this point conservation of momentum on the grid gives the grid point accelerations, av ,

mvav = f int
v + f ext

v , (10)

which determine the deformation of the grid over the time step. Grid velocities at the end
of the time step are then

v1
v = v0

v + av�t. (11)
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Material point positions and velocities are updated consistent with the deformation of the
grid,

x1
p = x0

p +
∑

v

Svpv1
v�t, (12)

v1
p = v0

p +
∑

v

Svpav�t. (13)

Interpolating only changes in position and velocity provides for less numerical diffusion
than previous PIC methods, as discussed in Refs. [7, 9].

If the stress is not updated at the beginning of the time step, it may be updated at the end.
In this case the strain increment is calculated from velocities v1

v and denoted by ��1
p,

��1
p = 1

2

∑
v

(∇Svpv1
v + v1

v∇Svp
)
�t. (14)

It should be noted that calculation of v1
v from the updated grid momenta can result in

numerical errors when grid masses are small. Numerical problems can be eliminated by
interpolating updated material point velocities, v1

p, to the grid for use in the strain-increment
calculation, as described in [16]. The Cauchy stress update is

�1
p = �0

p + ��p
(
��1

p

)
(15)

and completes the algorithm for the time step. At this point the deformed grid is discarded
and a new time step begins with an interpolation of values from the material points to a new
grid.

3. ENERGY CONSERVATION PROPERTIES OF MPM ALGORITHMS

Of interest in this section is the calculation of the change in kinetic and internal energies, as
well as any discretization error, during a time step. Some energy properties, associated with
interpolation between grid and particles, were determined previously for the FLIP algorithm
[7, 9], where kinetic energies on the grid and particles were compared. In the FLIP algorithm
material properties were interpolated to the grid in order to calculate internal energy there
for elastic materials. While it is possible in theory to interpolate constitutive parameters
to the grid and then evaluate constitutive response and change in internal energy there, in
practice this is difficult for inelastic constitutive models with internal variables. The MPM
algorithm avoids these difficulties by evaluating material response on the material points
and only interpolating to the grid the resulting internal forces. This provides a general
framework for the implementation of inelastic constitutive models without the need to
construct material state variables on the grid.

Of interest is the change in energy of a system during a time step in the absence of heat
transfer to the system, i.e., isothermal or adiabatic solid mechanics. Because the material
points carry the complete solution at both the beginning and the end of a time step, with the
grid serving only to provide kinematic updates, the view taken here is that the system of
interest is the collection of material points. This view is also motivated by the fact that only
the material points carry constitutive information in MPM, suggesting the material points
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are the natural places to calculate the internal, or strain, energy. In this setting, and in the
absence of external work on the system, the total energy change on the material points over
a time step, �Epoints, should be zero but may in fact have error, �Eerror, associated with
solving the discrete equations,

�Epoints = �KEpoints + �SEpoints = �Eerror, (16)

where �KEpoints is the change in kinetic energy on the material points and �SEpoints is the
change in strain energy on the material points. It is found advantageous to divide the error
into two contributions, one due to interpolation of kinetic energies from grid to material
points, �Einterpolation, and another due to everything else, and denoted as the algorithm error,
�Ealgorithm,

�Eerror = −�Einterpolation − �Ealgorithm, (17)

where

�Einterpolation = �KEgrid − �KEpoints, (18)

�Ealgorithm = −�KEgrid − �SEpoints, (19)

and �KEgrid is the change in kinetic energy on the grid. This subdivision is useful in
determining the sign of the incremental error terms, and thus whether or not they are
dissipative. With the sign convention adopted, �Einterpolation and �Ealgorithm are dissipative
when positive.

First the interpolation error is found. The change in kinetic energy is defined as expected
on the grid by

�KEgrid = 1

2

∑
v

mvv1
v · v1

v − 1

2

∑
v

mvv0
v · v0

v, (20)

and similarly on the material points

�KEpoints = 1

2

∑
p

m pv1
p · v1

p − 1

2

∑
p

m pv0
p · v0

p. (21)

It is convenient to work with changes in velocity rather than acceleration. The change in
velocity at a grid vertex, �vv , is

�vv = av�t, (22)

and that on a material point is found from interpolation (as in Eq. (13)),

�vp =
∑

v

Svp�vv. (23)

From Eqs. (11), (13), (18), and (20–23), it has been shown [7] that an error of order �t2 in
kinetic energy is caused by interpolating velocities from material points to grid and back
again, i.e.,

�Einterpolation = 1

2

(∑
v

mv�vv · �vv −
∑
vv′

mvv′�vv · �vv′

)
, (24)
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where the full mass matrix [9], mvv′ , is defined by

mvv′ =
∑

p

m p Svp Sv′ p. (25)

Further, it was shown [7, 9] that the interpolation error is positive semidefinite, indicating
that the algorithm is dissipative from Eq. (17). This result applies to the MPM algorithms
as well, where kinetic energy interpolation is handled in the same way.

Now the second term in Eq. (17), the algorithm error, is considered. First the internal, or
strain energy SE , must be defined,

SE(t) =
∫

v

�e dv, (26)

where � (x, t) is the density, e(x, t) is the internal energy, and the integration is over the
current configuration. The first law of thermodynamics, in its purely mechanical form [10]
(in the absence of heat transfer), states that �de/dt = � : D, where �(x, t) is the Cauchy
stress, D(x, t) is the rate of deformation tensor as discussed in conjunction with Eq. (7), and
: is a tensor inner product, i.e., � : D =∑3

i=1

∑3
j=1 �i j Di j in three dimensions. Using the

first law and a transport theorem, the rate of change of the strain energy is

dSE
dt

=
∫

v

� : D dv, (27)

where the integration is over the current volume of the system, v. This becomes a sum over
material points in accordance with the spatial discretization

dSE
dt

=
∑

p

�p : DpVp. (28)

An approximation to the total change in strain energy on the material points over a time
step, �SEpoints, is found by substituting the Taylor series expansions

�p(t) = �0
p + �̇p(t − t0) + O(t − t0)2, (29a)

Vp(t) = V 0
p + V̇p(t − t0) + O(t − t0)2 (29b)

and integrating over a time step. Here a superimposed dot indicates derivation with respect
to time. This gives

�SEpoints =
∑

p

1

2

(
�0

p V 1
p + �1

p V 0
p

)
: ��p + O(�t3). (30)

For infinitesimal deformations the volume is unchanged and

�SEpoints =
∑

p

�0
p + �1

p

2
: ��pVp + O(�t3). (31)

This form is often used more generally for computational efficiency, using only the volume
at a particular time during a time step to update the strain energy, which is first-order accurate
in �t .
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For infinitesimal deformations Eq. (31) is exact for hypoelastic materials, for which the
tangent modulus is constant and the expansion Eq. (29a) has no quadratic or higher order
terms. Using this approximation to the change in the internal energy rather than that used
previously [15] results in accuracy of energy accounting throughout to order �t2 on the
material points.

Equation (20) may be rewritten, using Eqs. (11) and (22), as

�KEgrid =
∑

v

mv�vv ·
(

v0
v + 1

2
�vv

)
. (32)

At this point, from Eqs. (9), (10), and (22), it is noted that for f ext
v = 0,

�vv = − 1

mv

∑
p

∇Svp · �pVp�t. (33)

Substituting Eq. (33), switching the order of summation, and substituting Eqs. (7) and (14),
the change in kinetic energy on the grid, Eq. (32), may be rewritten as

�KEgrid = −1

2

∑
p

�p :
(
��0

p + ��1
p

)
Vp. (34)

From Eqs. (30) and (34), �Ealgorithm becomes

�Ealgorithm = 1

2

∑
p

�p :
(
��0

p + ��1
p

)
Vp −

∑
p

�0
p + �1

p

2
: ��pVp. (35)

This second contribution to energy conservation error is also of order �t2, but may be of
either sign, and is strongly dependent on when the stress state is updated. Specifically, �p,
appearing in the first term on the right hand side of Eq. (35), and ��p, appearing in the
second term, depend on whether the stress is updated at the beginning or at the end of the
algorithm. The two possibilities are considered separately.

3.1. Update Material Point Stresses First (USF) Algorithm

As outlined in the previous section on the MPM algorithm, the stress on the material
points may be updated based on the strain increment, ��0

p, calculated from the initial
material point velocities interpolated to the grid, v0

v (Eq. (7)). This option is referred to
subsequently as the update-stress-first (USF) algorithm. For this case �1

p is given by Eq. (8),
and the grid velocity increment is determined from the updated stress,

�vv = − 1

mv

∑
p

∇Svp · �1
p Vp�t. (36)

The change in kinetic energy on the grid is then, from Eq. (34),

�KEgrid = −1

2

∑
p

�1
p :
(
��0

p + ��1
p

)
Vp, (37)
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and the change in strain energy of the material points is given from Eq. (30), using strain
increment ��0

p,

�SEpoints =
∑

p

�0
p + �1

p

2
: ��0

pVp. (38)

Finally, the algorithm error is

�Ealgorithm = 1

2

∑
p

(
�1

p : ��1
p − �0

p : ��0
p

)
Vp. (39)

The error term is the difference between two strain energy-like terms.
In practice the fourth-order tangent stiffness tensor, L, is used to advance the stress over

a time step, i.e., Eq. (8) is rewritten as

�1
p = �0

p + L : ��0
p. (40)

In general the tangent stiffness tensor is state dependent and varies from time step to time
step. Substituting (40) into (39) gives

�Ealgorithm = 1

2

∑
p

(
�1

p :
(
��1

p − ��0
p

)+ ��0
p : L : ��0

p

)
Vp. (41)

Using the definition of the strain increments, Eqs. (7) and (14), along with Eq. (36), the
algorithm error becomes

�Ealgorithm = −1

2

∑
v

mv�vv · �vv + 1

2

∑
p

��0
p : L : ��0

pVp. (42)

Finally the total error increment, Eq. (17), using Eqs. (24) and (42) is found to be

�Eerror = 1

2

∑
vv′

mvv′�vv · �vv′ − 1

2

∑
p

��0
p : L : ��0

pVp (43)

for the USF algorithm. Written this way, �Eerror takes a form which is suggestive of a
trade-off between an incremental change in kinetic energy and an incremental change in
strain energy. As such, these terms might be expected to cancel each other out.

3.2. Update Material Point Stresses Last (USL) Algorithm

The other option, equally valid from an algorithmic standpoint, is to update the stress on
the material points at the end of the time step, using the strain increment, ��1

p, calculated
from the updated material point velocities interpolated to the grid, v1

v (Eq. (14)). This option
is referred to subsequently as the update-stress-last (USL) algorithm. For this case �1

p is
given by Eq. (15), but the grid velocity increment is determined from the initial stress,

�vv = − 1

mv

∑
p

∇Svp · �0
p Vp�t. (44)
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The change in kinetic energy on the grid is then, from Eq. (34),

�KEgrid = −1

2

∑
p

�0
p :
(
��0

p + ��1
p

)
Vp, (45)

and the change in strain energy of the material points uses the strain increment ��1
p,

�SEpoints =
∑

p

�0
p + �1

p

2
: ��1

pVp. (46)

Finally the algorithm error is given by

�Ealgorithm = 1

2

∑
p

(
�0

p : ��0
p − �1

p : ��1
p

)
Vp. (47)

The error term has exactly the opposite sign as for the USF algorithm, Eq. (39).
It is clear then that when the material point stresses are updated has a strong impact on

the sign of the incremental error term �Ealgorithm. If �Ealgorithm were of one sign for one
choice of the algorithm (starting from the same conditions at the beginning of a time step),
it would be of the opposite sign for the other choice.

It should be noted at this point that in fact the error terms are not exact opposites of
each other in the two algorithms. There is steady divergence on account of the grid velocity
updates, Eqs. (36) and (44), which use updated and initial stresses, respectively. In addition,
updating material point stresses also results in updates to material point volumes for finite
deformations. The corrections are small. If one chooses for convenience to define Eq. (38)
using the updated volume V 1

p and Eq. (46) using volume V 0
p , Eqs. (39) and (47) still follow,

but with V 1
p and V 0

p appearing, respectively.
As for the USF algorithm, in practice the stress is advanced using the tangent stiffness

tensor, L. Equation (15) may be rewritten as

�1
p = �0

p + L : ��1
p. (48)

Substituting (48) into (47) gives

�Ealgorithm = 1

2

∑
p

(
�0

p :
(
��0

p − ��1
p

)− ��1
p : L : ��1

p

)
Vp. (49)

Using the definition of the strain increments, Eqs. (7) and (14), along with Eq. (44), the
algorithm error becomes

�Ealgorithm = 1

2

∑
v

mv�vv · �vv − 1

2

∑
p

��1
p : L : ��1

pVp. (50)

Finally the total error increment, Eq. (17), using Eqs. (24) and (50) is found to be

�Eerror = −2�Einterpolation − 1

2

∑
vv′

mvv′�vv · �vv′ + 1

2

∑
p

��1
p : L : ��1

pVp (51)
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for the USL algorithm. Written this way, �Eerror takes a form similar to that in Eq. (43),
but with an additional dissipative term. If Eq. (43) were found to be zero, the error for the
USL algorithm would be strictly dissipative and with an absolute value equal to twice the
interpolation error, �Einterpolation.

Both versions of the algorithm have found application in the literature. The USL algorithm
is presented and applied in [14–17]. Elastic vibration calculations, with results consistent
with those presented in the following section, are presented in [14, 15], although the internal
energy was calculated differently and the error was not computed. The USF algorithm is
used in [1, 3, 4].

4. APPLICATIONS

To experiment numerically with the two versions of the MPM algorithm easily, a one-
dimensional MPM code was written. Its modular design allows the material point stress
state to be easily updated either at the beginning (USF) or end (USL) of the algorithm. A
classical example of a conservative system is free vibration, two examples of which are
considered here. To determine the accuracy of the numerical results, it is useful to have
exact solutions to compare against. Analytical solutions can be derived for free vibration
of elastic material for the two cases considered here. The first is a single-material-point
problem, for which the MPM algorithm equations can be solved analytically in the limit
�t → 0. The second is the axial vibration of a continuum bar, which can then be discretized
and solved approximately using MPM.

4.1. Single-Material-Point Vibration

The initial setup is one material point, with velocity v0, in a cell with vertices at x = 0 and
L (see Fig. 1). Boundary conditions are imposed on the grid and demand that both the vertex
velocity and the acceleration at x = 0 be zero throughout the simulation. The interpolation
function for the vertex at x = L is also shown in Fig. 1. It is the only interpolation function
needed, on account of the null values of the interpolants at the left vertex. A hypoelastic
constitutive model is used for the material points, i.e.,

�̇ = E �̇, (52)

S(x)

X

v

xp0 L

FIG. 1. Initial configuration for the single-material-point problem. The material point is shown as a filled
circle, and grid vertices are indicated with thick black ticks marks. The interpolation function at x = L is also
shown.
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where �̇ = dv/dx and modulus E is a constant. This material response allows the equations
to be easily solved analytically.

In the limit �t → 0 there is no difference between the USL and USF algorithms. The
steps in either algorithm give the following updates for material point variables, where the
subscript p has been omitted because only one material point is considered. The material
point strain update, Eq. (7) or (14), becomes

�̇ = v

L
. (53)

The stress update is given by Eq. (52), and the material point velocity update is, from
Eqs. (13), (22), and (33),

v̇ = −�V

mL
. (54)

These equations may be combined to give

v̈ + E

� L2
v = 0, (55)

where � = m/V .
This equation may be easily solved using the initial conditions v(0) = v0, v̇(0) = 0 to

give

v(t) = v0 cos(�t), (56)

where � = √
E/�/L and the density is assumed to remain constant. The solution corre-

sponds to harmonic oscillation with frequency �. Because of the way material point posi-
tions are updated, the position is not a simple integration of Eq. (56). Rather, the algorithm
specifies, from Eq. (12),

ẋ = S(x)v. (57)

This equation may be integrated, along with initial condition x(0) = x0, to give

x(t) = x0 exp

[
v0

L�
sin(�t)

]
. (58)

For v0/L�  1, Eq. (58) is approximately a sinusoidal oscillation. It can easily be shown
that the analytical solution corresponds to oscillatory material point stress and strain, such
that the sum of the kinetic and strain energies is constant, and energy is exactly conserved
on the material point.

Energy conservation on the material point is approximate for the discrete algorithm, and
the error terms are of order �t2. A numerical example illustrates how the errors depend on
the details of the algorithm. Solutions were obtained with material point masses equal to 1,
volumes equal to 1, and moduli equal to 4�2. The cell size is L = 1, and initial conditions
are x0 = 0.5, v0 = 0.1. Any set of consistent units suffice. The material point volume, and
hence density, remain constant and equal to unity in the calculations. The elastic wave speed
in the problem, c, is

√
E/� = 2�, and a time step of 0.1L/c (10% of the CFL limit on the
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FIG. 2. Velocity during oscillation for both variations of the MPM algorithm. The exact solution is shown for
reference.

explicit time step size) gives the results seen in Fig. 2, where the material point velocity
is shown. The exact solution and that using the USF algorithm are indistinguishable. The
strong dissipation seen for the USL algorithm can be understood by examining the energy
error terms. At this point, it is simply noted that the time step is sufficiently small to very
accurately capture the period of oscillation of the analytical solution (2�/� = 1) using
either algorithm. It should be noted, however, that this solution is a poor approximation to
the axial vibration of a continuum bar (see the following section), as the period of oscillation
is overestimated by nearly 60%.

Numerical results for the energies are depicted in Fig. 3. Strain energy, kinetic energy, and
their sum, the total energy, are depicted. The analytical solution conserves total energy, at a
value equal to the initial kinetic energy of the system, 0.005. The USL results are strongly
dissipative, and the USF results appear conservative on average. The oscillations are caused
by the strain energy leading the kinetic energy in the USL algorithm, and by lagging in
the USF algorithm. It would be natural to update the strain energy at half time steps, but
both algorithms update the strain energy at the end of the time step, where the kinetic
energy is calculated, for simplicity. The strain energy leads in the USL algorithm because
the updated value of the strain is used, while the opposite is the case for the USF algorithm.
Oscillations and damping consistent with these results are seen in [14], in two-dimensional
elastic vibration calculations, where the USL algorithm is used.
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FIG. 3. Oscillation energies for both variations of the MPM algorithm. The legend applies to both algorithms.
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FIG. 4. Oscillation energy and error terms for both variations of the MPM algorithm. The legend applies to
both algorithms.

The numerical solution error terms are depicted in Fig. 4, along with the total energy
and the sum of the three. The sum is constant and equal to the initial energy of the system.
The difference between the algorithms is seen in the algorithm errors for the two cases.
For the USF algorithm, the algorithm error is generally negative, supplying energy to the
system. However, as always, the interpolation error is positive, dissipating energy. The
two errors miraculously cancel, on average, creating an apparently conservative system
overall. This adds credence to the postulate made in conjunction with Eq. (43), that the
total error for the USF algorithm is the sum of incremental kinetic and strain energy terms.
While the total error is not identically zero, the fact that the total energy oscillates about the
energy + Error indicates that it is zero on average. The USL algorithm is quite different, with
both errors positive and dissipative, resulting in the rapid damping out of the motion. Here
again there is evidence that the incremental kinetic energy and incremental strain energy
terms cancel in Eq. (51). While not identical, the algorithm error and the interpolation error
oscillate about the same mean value and tend toward the same asymptote, indicating that
the total error is dissipative, with absolute value equal to twice the interpolation error on
average.

The sign of the algorithm error terms can be found analytically for this simple problem.
Assuming the exact solution for the velocity and stress at the beginning of a time step
(t = t0), the stress is

�0
p = E

�

v0

L
sin(�t0), (59)

and the strain increment, ��0
p, is

��0
p = v0

L
cos(�t0)�t. (60)

The updated stress, �1
p , and strain increment, ��1

p, are found using the USF and USL
algorithms. Evaluating the incremental algorithm error terms, and integrating over one
period to eliminate periodic fluctuations, for the USF algorithm, from Eq. (41),

∫ 2�
�

0
�Ealgorithm dt = 1

2
E

v2
0

L2
�t2

(
�

�
−
∫ 2�

�

0

sin2(�t)

Svp
dt

)
Vp ≤ 0. (61)
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For the USL algorithm, from Eq. (49),

∫ 2�
�

0
�Ealgorithm dt = 1

2
E

v2
0

L2
�t2

(∫ 2�
�

0

sin2(�t)

Svp
dt − �

�

)
Vp ≥ 0. (62)

In both cases the sign of the error is determined using the fact that Svp ≤ 1, from
Eq. (1).

It should be noted that, consistent with either algorithm, momentum is conserved in these
calculations. An oscillating and translating system will continue to translate with no loss
in total momentum. The motion relative to the center of mass (which is all the motion in
the above examples) is damped out quickly by the USL algorithm, but not by the USF
algorithm. Multiple material point discretizations of a continuum are considered next to
examine the energy properties for more general cases.

4.2. Axial Vibration of a Continuum Bar

Under infinitesimal displacements, the equations for free axial vibration of a uniform
continuous bar may be solved using separation of variables [13]. The bar is found to oscillate
in modes, which are dependent on the boundary conditions. The case considered here is the
analogy to the single-material-point problem. One end (x = 0) of the bar is fixed, and the
other (x = L) is free, where L is the length of the bar.

The modes of vibration, �n , are

�n(x) = sin �n x, �n = 2n − 1

2

�

L
, n = 1, 2, . . . . (63)

For the examples here, L is taken to be an integral number of computational cells. The
frequencies of oscillation, �n , are related to eigenvalues, �n , by

�n = �nc, (64)

where c = √
E/� , as before. A general solution for any initial conditions may found as a

Fourier sine series for the displacement, u(x, t),

u(x, t) =
∞∑

n=1

(An sin �nt + Bn cos �nt) �n(x), (65)

where An and Bn are constants determined from the initial conditions. However, it is possible
to excite specific modes using initial conditions which are multiples of the natural modes of
the system. Only mode n is excited using initial conditions u(x, 0) = 0, v(x, 0) = u̇(x, 0) =
v0 sin �n x ; i.e., the solutions are

u(x, t) = v0

�n
sin �nt sin �n x, (66)

v(x, t) = v0 cos �nt sin �n x, (67)

where v0 is the amplitude of the initial velocity.
The response depicted in Fig. 5 was elicited for both versions of the MPM algorithm

using mode 1(n = 1) initial conditions. The velocity of the center of mass is shown for a 50
material point discretization, with two material points per cell. The cell length is �x = 1,



398 S. G. BARDENHAGEN

-0.1

-0.05

0

0.05

0.1

0 20 40 60 80 100

C
M

 V
el

oc
ity

Time

Exact
USL
USF

FIG. 5. First-mode oscillation center-of-mass velocity for both variations of the MPM algorithm. The exact
solution is shown for reference.

L = 25. The modulus E = 100 and density � = 1, giving the wave speed c = 10. The
velocity amplitude v0 = 0.1, and a time step of 0.1�x/c (10% of the CFL limit on the
explicit time step size) are used in the calculations. As in the previous example, any set of
consistent units may be used.

The exact solution for a continuum is shown for comparison. The period of vibration
is 2�/�1 = 10, and the wavelength of the first mode is 2�/�1 = 4L . The center of mass
motion vcm(t) is found from the exact solution by taking the first mass-weighted moment
of the velocity,

vcm(t) =
∫ L

0
� (x)v(x, t) dx

/∫ L

0
� (x) dx = v0

�n L
cos(�nt). (68)

All center-of-mass velocities overlie one another in Fig. 5.
Figure 6 depicts total material point energies for both algorithms for mode 1 excitation.

No perceptible difference can be discerned between the two algorithms, and very little
error is found. Conspicuously absent is the strong dissipation seen previously for the USL
algorithm. Figure 7 depicts total energies and error terms for both algorithms for mode 1
excitation. Again no perceptible differences are seen. For the first mode, the interpolation
error is essentially zero, and the algorithm error results in barely perceptible oscillations.

To investigate further, higher modes are excited. Figure 8 depicts exact and numer-
ical solutions for the fifth-mode center-of-mass velocity. The exact solution has period
2�/�5 = 10/9 and modal wavelength 4L/9. The numerical solutions are run for 10 peri-
ods of oscillation, as for the first mode. For this mode there is some error in the calculated
frequencies, resulting in the period of the numerical solutions being about 5% too large.
Additionally, dissipation is evident in the USL algorithm results.

Figure 9 depicts energies for both algorithms for mode 5 excitation. Results are remi-
niscent of the single-material-point problem. The USF algorithm appears conservative on
average, and the dissipative nature of the USL algorithm is evident. Figure 10 depicts total
energies and error terms for both algorithms for mode 5 excitation. The trends established
in the single-material-point problem are again exhibited. For this mode, with a wavelength
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FIG. 6. First-mode oscillation energies for both variations of the MPM algorithm.
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FIG. 7. First-mode oscillation energy and error terms for both variations of the MPM algorithm.
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FIG. 8. Fifth-mode oscillation center-of-mass velocity for both variations of the MPM algorithm. The exact
solution is shown for reference.
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FIG. 9. Fifth-mode oscillation energies for both variations of the MPM algorithm.

of approximately 11 computational cells, the error is associated with difficulty in resolving
the mode on the grid. Increasing the resolution decreases the error. This behavior has been
seen with the FLIP algorithm as well [5, 8].

To further test the algorithms, the tenth mode is excited. Figure 11 depicts exact and
numerical solutions for the tenth-mode center-of-mass velocity. The exact solution has
period 2�/�10 = 10/19 and modal wavelength 4L/19. The numerical solutions are run
for 10 periods of oscillation, as before. For this mode there is more error in the calculated
frequencies, resulting in the period of numerical solutions being about 20% too large.
Significant dissipation is evident in the USL algorithm results.

Figure 12 depicts energies for both algorithms for mode 10 excitation. Results are rem-
iniscent of those for mode 5, but with larger error oscillations for both algorithms. The
USF algorithm appears conservative on average, and the USL algorithm is strongly dissi-
pative. Figure 13 depicts total energies and error terms for both algorithms for mode 10
excitation. Again the trends established in the single-material-point problem are exhib-
ited. For this mode the wavelength is approximately five computational cells, and there
is error in resolving the mode on the grid. In fact there is error associated with resolving
the initial conditions, and longer runs indicate longer wavelength modes have also been
excited.

The free-vibration numerical results given in this section may be considered converged
in the sense that decreases in time step magnitude do not change the calculated periods
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FIG. 10. Fifth-mode oscillation energy and error terms for both variations of the MPM algorithm.
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FIG. 11. Tenth-mode oscillation center-of-mass velocity for both variations of the MPM algorithm. The exact
solution is shown for reference.
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FIG. 12. Tenth-mode oscillation energies for both variations of the MPM algorithm.
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FIG. 13. Tenth-mode oscillation energy and error terms for both variations of the MPM algorithm.
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of oscillation. Effectively, the numerical discretization results in the solution to a softer
system when the mode is unresolved on the grid. The limiting case is given for the one-
material-point problem, where the period is overestimated by almost 60%. Of course, en-
ergy errors and dissipation decrease with decreasing time step. It is also worth noting
that these results are essentially unaffected by varying the number of material points per
cell.

5. CONCLUSIONS

This manuscript details energy conservation properties of two variants of the MPM
algorithm, where material response is determined on discrete points (material points), while
the governing equations are solved on an overlying grid. Consistent with the constitutive
response, the material internal energy is also carried on the material points. While this
provides substantial simplification in the implementation of complex material response
relations, it complicates the calculation of change in energy over a time step. Material
point internal energies at the beginning and end of a time step, during which information is
interpolated from material points to grid and back again, must be compared.

In the application of the MPM algorithm there is no reason a priori to prefer to update the
material point stresses and internal energies at the beginning (USF algorithm) or end (USL
algorithm) of a time step. Both versions of the algorithm conserve mass and momentum.
Here the internal and kinetic energies on material points, as well as errors due to discretiza-
tion, are considered. The energy accounting benefits from a more accurate calculation of
the internal energy than used previously, resulting in accuracy to order �t2 throughout the
calculations. For both algorithms it is found that the error may be partitioned into that due
to interpolation plus a remainder (termed the algorithm error). The interpolation error is a
more general property of PIC algorithms and is dissipative. The algorithm error is specific
to the MPM algorithms and is found to depend strongly on the order of updating material
point states, having opposite signs for USF and USL algorithms.

The error properties of the two algorithms are demonstrated using free-vibration ex-
amples. Numerical solutions are compared with the exact solution for a single-material-
point problem, for which the discrete equations may be solved analytically. For the single-
material-point problem both algorithms accurately reproduce the exact solution period of
oscillation, but the USL algorithm is strongly dissipative. For this simple example the sign
of the error terms may be found analytically. Both terms are of the same sign and dissipative
for the USL algorithm. For the USF algorithm the error terms are of opposite sign and cancel
each other out, resulting in a conservative system.

Numerical solutions are compared with the exact solution for free axial vibration of
a continuum bar. It is found that both algorithms give identical results with negligible
energy error or dissipation when the oscillation-mode wavelength is long relative to the cell
size, i.e., the mode is resolved on the computational grid. When the mode is not resolved,
both algorithms overestimate the period of oscillation with equal error, increasing as the
wavelength approaches the computational cell size. The single-material-point problem may
be considered the coarsest possible discretization of the axial vibration of a bar, for which
the period of oscillation obtained via the MPM algorithm is in error by more than 50%.
For the unresolved modes the USL algorithm is dissipative, while the USF algorithm is
conservative. The USL algorithm may be described as tending to damp out unresolved
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modes. The USL algorithm may be a better choice, as the damping is consistent with the
accuracy of the solution.

ACKNOWLEDGMENTS

The author would like to acknowledge helpful discussions with Dr. J. U. Brackbill, Theoretical Division, Los
Alamos National Laboratory. This work was supported by the U.S. Department of Energy through the Center for
the Simulation of Accidental Fires and Explosions, under Grant W-7405-ENG-48.

REFERENCES

1. S. G. Bardenhagen and J. U. Brackbill, Dynamic stress bridging in granular material, J. Appl. Phys. 83, 5732
(1998).

2. S. G. Bardenhagen, J. U. Brackbill, and D. Sulsky, The material-point method for granular materials, Comput.
Methods Appl. Mech. Eng. 187, 529 (2000).

3. S. G. Bardenhagen, J. U. Brackbill, and D. Sulsky, Numerical study of stress distributions in sheared granular
material in two dimensions, Phys. Rev. E 62, 3882 (2000).

4. S. G. Bardenhagen, E. N. Harstad, P. J. Maudlin, G. T. Gray, and J. C. Foster, Viscoelastic models for explosive
binder materials, Shock Compression Condens. Matter 281 (1998).

5. J. U. Brackbill, The ringing instability in particle-in-cell calculations of low-speed flow, J. Comput. Phys. 75,
469 (1988).

6. J. U. Brackbill, Flip-mhd: A particle-in-cell method for magnetohydrodynamics, J. Comput. Phys. 96, 163
(1991).

7. J. U. Brackbill, D. B. Kothe, and H. M. Ruppel, FLIP: A low-dissipation, particle-in-cell method for fluid
flow, Comput. Phys. Commun. 48, 25 (1988).

8. J. U. Brackbill and H. M. Ruppel, FLIP: A method for adaptively zoned, particle-in-cell calculations in two
dimensions, J. Comput. Phys. 65, 314 (1986).

9. D. Burgess, D. Sulsky, and J. U. Brackbill, Mass matrix formulation of the FLIP particle-in-cell method,
J. Comput. Phys. 103, 1 (1992).

10. Y. C. Fung, Foundations of Solid Mechanics (Prentice Hall, Engelwood Cliffs, NJ, 1965).

11. F. H. Harlow, The particle-in-cell computing method for fluid dynamics. Methods Comput. Phys. 3, 319
(1963).
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